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Abstract 

 

In this paper we consider k-tuple 

domination on the n×n bishop’s, rook’s, 

and queen’s graphs. For the n×n 

bishop’s graph, we solve the k-tuple 

domination number when k=n-1 and 

when k=n-3. For the n×n rook’s graph 

we find the k-tuple domination number 

for all n >1 and all j, with 0 ≤ n/2-1 ≤ j 

and k=2n-2-2j. Finally, for the n×n 

queen’s graph, a lower bound for the k- 

tuple domination number is found for 

k=3n-3. 

1. Introduction 

There are many types of chess 

themed problems that are of interest in 

mathematics and computer science. 

Hundreds of papers have been written in 

this subfield of mathematics. From the 

famous n-queen’s independence problem, 

to domination problems and knight’s tours 

and variations of these and other themes on 

different sized and shaped boards; there 

have been many different graph theoretic 

parameters explored for these graphs.   For 

two good surveys on the types of problems 

that are of interest, see both [9,12]. 

 

A chessboard graph is formed by 

taking the squares on a n×n board as 

vertices. Two vertices are adjacent on these 

graphs if and only if they’re separated by 

exactly one move of our piece type on an 

empty n×n board. Here our piece types are 

bishop, rook, or queen. These each form 

the bishop’s, rook’s, and queen’s graph, 

denoted by Bn, Rn, and Qn, respectively. 
 

In this paper we will be looking at a 

variation of graph domination known as k-

tuple domination. For a graph G=(V,E) a 

set S is a k-tuple dominating set if and only 

if for every vertex in vϵV, v has at least k 

open neighbors in S, or vϵS and v has at 

least k-1 open neighbors in 

S. Thus a set of pieces, all of one type, 

forms a k-tuple dominating set if and only 

if given any square on our n×n board, 

either the square is attacked at least k times 

or the square is occupied and attacked at 

least k-1 times. The minimum number of 

pieces of a certain type needed to provide a 

k-tuple dominating set is the k-tuple 

domination number, denoted by γ×k(Bn), 

γ×k(Rn), and γ×k(Qn) for the k-tuple 

domination numbers on the bishop’s, 

rook’s, and queen’s graph, respectively. 

For more information on the k-tuple 

domination number in general, see 

[4,5,6,7,8,10,11]. For past work that 

considers k-tuple domination on chessboard 

graphs, see [1,2,3]. 
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In Section 2 of this paper we further 
explore work on k-tuple domination for the 

n×n bishop’s graph. In particular, it found 

that for all n>1, γ×n-1(Bn)=n2-n. In Section 

2 we also find that for odd n>3, γ×n-

3(Bn)=n2-4n-3 and for even n≥4, γ×n-

3(Bn)=n2-4n+4. In Section 3 of this paper 
we look at k-tuple domination for the n×n 
rook’s graph. In this section it is shown that 

for all n>1 and all j, with 0 ≤ j ≤ n/2-1, γ×2n-

2-2j(Rn)=n2-nj-j-1. Finally, in Section 4, we 
arrive at a lower bound for the k-tuple 
domination number on the n×n queen’s 

graph for when k=3n-3. The lower bound is 

γ×3n-3(Qn)≥ n2-˻(n-1)/2˼. Concluding this 
section is a list of γ×3n-3(Qn) for some small 
board sizes. 

 

1 k-tuple domination on the bishop’s 

graph 

 

Theo

rem 

1 For 

all 

n>1, 

γ×n-

1(Bn)

≥ n2-

n. 
 

Proof: It is easy to see the theorem 

holds for n=2. Thus, let n>2 by 

assumption. 

 

Consider the border squares of our 

n×n board. Note that the all the vertices 

associated with the border squares all have 

degree of n-1.   Thus, if a border square is 

occupied it can have, at most, one 

unoccupied square adjacent to the border. 

Likewise, if unoccupied, a border square 

can’t have any adjacent, unoccupied 

squares. 

 

Next, consider our unoccupied 

squares. To begin, consider any unoccupied 

square not on the border. This means there 

are exactly 4 border squares that are 

diagonally adjacent to it. It follows that 

these 4 squares can’t be adjacent to 

anymore unoccupied squares. 

 

Now, consider any non-corner, 

border square which is unoccupied. It 

follows that this unoccupied, border square 

is adjacent to two other border squares.   

These two border squares also have an 

additional common neighbor along the 

border. It follows that this second, common 

neighbor cannot be adjacent to any other 

unoccupied square - or else the two border 

squares would be adjacent to, at most, n-3 

bishops. Thus, so long as we’re considering 

non-corner squares, any unoccupied square 

eliminates 4 of our border squares from 

being adjacent to any additional 

unoccupied squares. 

 

Finally, note if we have an 

unoccupied, corner square, this eliminates 

exactly 2 of our 4 corner squares from 

adjacency to any additional unoccupied 

square. This gives us an upper bound of 

4(n-2)/4 +4/2=n unoccupied squares since 

there are exactly 4(n-1) border squares. 

Thus, it follows that γ×n-1(Bn)≥ n2-n. □ 
 

Theo

rem 

2 For 

all 

n>1, 

γ×n-

1(Bn)

= n2-

n. 
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Proof: Since we showed the lower 
bound in Theorem 1, it suffices to show 
that γ×n- 1(Bn)≤ n2-n. Consider the following 
formation of bishops in Figure 1, shown 
below, which generalizes to any n×n board 
for n>1. 
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 B B B B B B 

 B B B B B B 

 B B B B B B 

 B B B B B B 

 B B B B B B 

 B B B B B B 

 B B B B B B 

Figure 1 A formation of bishops on a 

7×7 board which provides a minimum 

γ×6(B7)-set of 42 bishops. 

To see the generalization of the 

formation to any n×n board, first 

note that we have the n 

squares in the left-most column unoccupied. 

All other squares are occupied. 
 

It is straightforward to see that 

any of our occupied, border squares are 

adjacent to, at most, one unoccupied 

square. For the unoccupied squares, it is 

easy to see these squares are adjacent to 

no unoccupied square. Since these 

border squares have at least n-1 adjacent 

squares then these squares are dominated 

at least n-1 times. 

Next, consider the interior 

squares. Note that all the vertices 

associated with these squares have degree 

of at least n+1. Thus, since these squares 

are adjacent to, at most, two unoccupied 

squares, then it is clear these squares are 

dominated at least n-1 times. Since all 

squares are dominated at least n-1 times, 

it follows that γ×n-1(Bn) ≤ n2-n. □ 

Theorem 3 For all odd 

n>3, γ×n-3(Bn)≤ n2-4n+3. 

Proof: Given odd n>3, consider a 

formation of bishops as follows. Every 

square on our board is occupied, except for 

the border squares and the center square. 

Figure 2, below, will illustrate. 
 

       

 B B B B B  

 B B B B B  

 B B  B B  

 B B B B B  

 B B B B B  

       

Figur

e 2 A 

mini

mum 

γ×4(

B7)-

set of 

24 

bisho

ps. 

It is easy to see that the border 

squares are all adjacent to exactly 2 

unoccupied squares and are themselves 

unoccupied. Thus, since all border 

squares have corresponding vertices with 

degree n-1, they’re adjacent to exactly n-3 

bishops in the set. 
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Likewise, it is easy to see that 

since the vertices corresponding to 

occupied squares have degree of at least 

n+1, and these squares are adjacent to at 

most 5 unoccupied squares, then it is clear 

these squares are attacked at least n-4 

times with the squares being occupied. 

Finally, consider the center square. 

The vertex associated with this 

square has degree 2n- 

2. Since this square is adjacent to exactly 

4 unoccupied squares, and 2n-6 ≥ n-3 for 

n>4, then we have this square attacked at 

least n-3 times. 

For a count on the number of bishops 

in our set, note we have 4(n-1) 

border squares. 

Thus, we have n2-4(n-1)-2=n2-4n+3 bishops 

in our set. □ 

Theorem 4 For all n>3, 

γ×n-3(Bn)= n2-4n+3. 

Proof: First, it should be noted 
that by Theorem 3, that γ×n-3(Bn)≤ n2-
4n+3. Thus, it suffices to show that γ×n-

3(Bn) ≥ n2-4n+3. 

To see that γ×n-3(Bn) ≥ n2-4n+3, let a 

be the number of unoccupied squares in our 

set that are assigned to non-corner, border 
squares, b be the number of unoccupied 

squares assigned to corner squares, and c be 
the number of unoccupied squares in the 

interior of the board, but not along the main 
diagonal. Also, let d be the number of 

unoccupied squares along the main 

diagonals, except the corner squares or 
center square. Finally, let e be 0 if the center 

square is occupied and 1 if the center square 
is unoccupied. 

Note first that we must have any 

unoccupied squares along the border 

adjacent to, at most, 2 other unoccupied 

squares. Likewise, any occupied, border 

square can be adjacent to, at most, 3 

unoccupied squares. For the sake of this 

particular proof from here, let us define 

adjacency to include the closed 

neighborhood of a vertex and not merely 

the open neighborhood. Thus, a vertex 

(square) is adjacent to itself for our 

purposes. 

 
Next, note it follows that all our non-

corner, border squares are adjacent to exactly 

3 of these same squares. Likewise, the 

unoccupied squares in the interior of the 

board, but not along the main diagonal, are 

adjacent to exactly 4 of our non-corner, border 

squares. Also, our unoccupied squares that are 

on the main diagonal, but not in the corners or 

center square are adjacent to exactly 2 of our 

non-corner, border squares. Note that the non-

corner, border squares can be adjacent to, at 

most, 3 unoccupied squares – since their 

corresponding vertices all have degree n-1. 

Thus, since we have 4(n-2) non-corner, border 

squares, and each of these can be adjacent to, 

at most, 3 unoccupied squares, then we have 1) 

3a+4c +2d ≤ 3×4(n-2)=12(n-2). 

Now, consider the corner squares. 

Note that the center square is adjacent to all 4 

corner squares and any other square along the 

main diagonal is adjacent to 2 corner squares. 

It is the case that 2b+2d+4e ≤ 12, since we 

have 4 corner squares that must be adjacent to, 

at most, 3 unoccupied squares.  Thus, 2) 

b+d+2e ≤ 6. Note also that b≤4 and e≤1. 

Note we’re trying to maximize 

a+b+c+d+e. Thus, clearly c=0, since the 

slope of this variable is greater than the 

slope for variable a in 1). Consider then the 

cases for which d=0,1,2,3,4,5,6. We find 

that when d=6, a+b+c+d+e ≤ 4n-6. 

Similarly, when d=5, 
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a+b+c+d+e ≤ 4n-5. Also, when d=3 or d=4, a+b+c+d+e ≤ 4n-4. Finally, when d=0, d=1, or 

d=2, a+b+c+d+e ≤ 4n-3. Thus, the number of unoccupied squares is, at most, 4n-3. This yields 

γ×n-3(Bn) ≥ n2-4n+3 for odd n>3.  □ 

Theorem 5 For even n>2, γ×n-3(Bn) ≤ n2-4n+4. 

Proof: Consider a formation of bishops for even n>2 for which every border square is 

unoccupied and every interior square is occupied. Figure 3 will illustrate. 
 

        

 B B B B B B  

 B B B B B B  

 B B B B B B  

 B B B B B B  

 B B B B B B  

 B B B B B B  

        

Figure 3 A minimum γ×5(B8)-set of 36 bishops 
 

To see the set is a γ×n-3(Bn)-set for even 

n>2, first consider the interior squares. Each 

of these squares has corresponding vertices 

of degree n+1. It follows that since these 

squares are adjacent to, at most 4 unoccupied 

squares, then it is clear these squares are 

attacked n-3 times. 

Next, consider the border squares. 

These squares have corresponding vertices of 

degree n-1. These squares are adjacent to 

exactly 2 other unoccupied squares. Thus, it is 

clear these squares are attacked n-3 times. For 

a quick count on the number of bishops, note 

there are 4(n-1) border squares.  Thus, we have 

n2-4(n-1)=n2-4n+4 bishops.  □ 

Theorem 6 For even n>2, 

γ×n-3(Bn) = n2-4n+4. 

Proof: Since it has been shown in 
Theorem 5 that for even n>2, γ×n-3(Bn) ≤ n2-
4n+4, then it suffices to show that for even 
n>2, γ×n-3(Bn) ≥ n2-4n+4. 

Then let us in a similar fashion as 

Theorem 4 label variables for the unoccupied 

squares. Thus, let a be the number of 

unoccupied squares in our set that are assigned 

to non-corner, border squares, let b be the 

number of unoccupied squares assigned to 

corner squares, and let c be the number of 

unoccupied squares in the interior of the board, 

but not along the main diagonal. 

Also, let d be the number of unoccupied 

squares along the main diagonals, except the 

corner squares or center square. Note for even 

n>2, there is no central square to consider. 

Let us also for the sake of this proof define a 

square to be adjacent to itself, as in Theorem 

4. 

We then arrive at 1) 3a+4c +2d ≤ 

3×4(n-2)=12(n-2) and 2) b+d≤ 6, with b≤4. 

Thus, we consider the 7 possible values for 

which 0≤ d ≤6, and the upper bounds these 

cases provide for 

a+b+c+d. We find that when d=5 or 

d=6, a+b+c+d ≤ 4n-6. Also, when d=0, d=3 

or d=4, a+b+c+d ≤ 4n-4. Likewise, when 

d=1 or d=2, a+b+c+d ≤ 4n-3. Thus, the 

number of 
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unoccupied squares is, at most, 4n-3. 
Thus, γ×n-3(Bn) ≥ n2-4n+3 for even n>4. 
However, note that γ×n-3(Bn) must be even 
since Bn is the union of two isomorphic 
graphs. Thus, γ×n-3(Bn) ≥ n2- 4n+4 for even 
n>2. □ 

3 k-tuple domination on the rook’s graph 

Theorem 7 For all n>1, and all j 

with 0 ≤ j ≤ n/2-1, γ×2n-2-2j(Rn)≤ n2- 

nj - j - 1. 

Proof: We will first show that 
γ×2n-2-2j(Rn)≤ n2- nj - j – 1 when n>1 and 0 
≤ j≤ n/2-1 by referring to the formation 
shown below in Figure 4. 

R R R   R R R 

R R R  R R R  

R R R R R R   

R R R R R   R 

R R R R   R R 

   R R R R R 

   R R R R R 

   R R R R R 

Figure 4 A set of 45 rooks forming a minimum γ×10(R8)-set. 
 

To form this k-tuple dominating 

set for general n, begin by assigning 

unoccupied squares in the lower-left, 

(j+1)×(j+1) subboard. In the (j+1)×(n-j-

1) and the (n-j-1)×(j+1) subboards in the 

upper-left and lower-right of the board, 

respectively, assign all these squares as 

occupied. 

This leaves us with the upper-right, (n-j-

1)×(n-j-1) subboard. 
 

In this subboard place n-2j-1 sets of 

n-j-1 rooks. Each of these sets individually 

will form an independent set of rooks. 

More specifically, for n-2j-1=1, assign 

rooks to all squares along the main, 

positive sloping diagonal of our upper-

right subboard. Then, for n-2j-1=2, assign 

rooks to squares directly above the 

previous occupied squares in the upper-

right subboard and in the lower-right 

square of our (n-j-1)×(n-j-1) upper-right 

subboard. Such a process continues by 

assigning rooks to each of the diagonals’ 

squares immediately above the previous 

step’s diagonals, and in the (n-j-1)×(n-j-1) 

subboard by inductive step placement for 

higher values of n- j-1. These diagonals 

exist for so long as 0 ≤ j ≤ n/2-1. All the 

remaining squares of our (n-j- 1)×(n-j-1) 

subboard are unoccupied. 

To see this is a (2n-2j-2)-tuple 

dominating set of rooks let us first 

examine the lower-left (j+1)×(j+1) 

subboard. These squares are adjacent to n-

j-1 rooks in the upper-left subboard and n-

j-1 rooks in the lower-right subboard. 

Thus, these squares are adjacent to exactly 

2(n-j-1)=2n- 2j-2 rooks. 

Next, consider the squares in the 

upper-left (n-j-1)×(j+1) subboard and the 

lower-right (j+1)×(n-j-1) subboard. 

These squares are all occupied and 

adjacent to exactly j+n-j-2 rooks in their 

own subboards. They’re also adjacent to 
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n-2j-1 rooks in the upper-right subboard. 

This 
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gives us a total of 2n-2j-3 rooks that 

attack these squares. Thus, since 

these squares are all occupied, 

there’s no reason to consider them 

any further. 

Next, let us consider the occupied 

squares in the upper-right (n-j-1)×(n-

j-1) subboard. 

They’re adjacent to exactly 2(j+1) rooks 

from the other two subboards with rooks in 

them. Also, they’re adjacent to exactly 2(n-

2j-2) rooks from their own subboard. This 

gives us adjacency to exactly 2(j+1)+2(n-

2j-2)=2n-2j-2 rooks. 

Finally, let us consider the squares in 

the upper-right subboad that aren’t 

occupied. 

They’re adjacent to exactly 2(j+1) rooks 

in the other subboards and 2(n-2j-1) rooks 

in their own subboard. This yields a total 

of 2(j+1)+2(n-2j-1)=2n-2j rooks that are 

adjacent to these squares. 

Note for the total count of rooks we 

have 2(n-j-1)(j+1) rooks in the upper-left 

and lower right subboards. We also have (n-

2j-1)(n-j-1) rooks in the upper-right 

subboard. Summing these gives us exactly 

2(n-j-1)(j+1)+ (n-2j-1)(n-j-1)=n2-nj-j-1 

rooks in our set. □ 

Theorem 8 For all n>1, and all j 

with 0 ≤ j ≤ n/2-1, γ×2n-2-2j(Rn)= n2- 

nj - j - 1. 

Proof: First note that by 

Theorem 7, for all n>1, and all j 

with 0 ≤ j ≤ n/2-1, 

γ×2n-2-2j(Rn) ≤  n2- nj - j - 1. Thus all 

that needs to be shown is that for all 

n>1, and all j with 0 ≤  j ≤ n/2-1, γ×2n-

2-2j(Rn) ≥ n2- nj - j - 1. 

Suppose we’re given a k-tuple 

dominating set of rooks on our n×n rook’s 

graph, where k=2n-2-2j for 0≤ j ≤ n/2-1 

and n>1. Also, suppose we have all rows 

with at most j unoccupied squares in them. 

It follows that we can have, at most, nj 

unoccupied squares on our board. Thus, 

γ×2n-2-2j(Rn)≥ n2- nj > n2-nj- j – 1. It follows 

this cannot be a minimum k-tuple 

dominating set of rooks. 
 

Next, suppose there exists a row 

with j+c unoccupied squares in it, with 

c≥2. It follows that there can be no more 

than j+1-c unoccupied squares in each 

column, but not in the considered row - 

since we must dominate the squares in this 

row at least k=2n-2-2j times. Thus, there 

are at most j+c+n(j+1-c) unoccupied 

squares on our board. It follows that there 

are at least n2-j-c-nj-n+nc rooks in our set. 

However, since nc>n+c-1 for n>1 and 

c≥2, then it follows this cannot be a 

minimum k-tuple dominating set or rooks. 

Finally, suppose there exists a row 

with exactly j+1 unoccupied squares 

in it, with 

0 ≤ j ≤ n/2-1. Note then that any column 

can have, at most, j additional unoccupied 

squares in the remaining n-1 column 

squares not in the considered row - since 

we need our set to be dominated at least 

k=2n-2-2j times. It follows that we have, 

at most, nj+j+1 unoccupied squares on our 

board.  Thus, we have at least n2-nj-j-1 

rooks in our set.  □ 
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4 k-tuple domination on the queen’s 

graph 

 

Theorem 9 For all n>2, 

γ×3n-3(Qn) ≥ n2- ˻(n-1)/2˼. 
 

Proof: It is easy to see that for n=3 

and n=4 the theorem holds. 

 

Next, to proceed for the other 

cases where n>4, note there must exist at 

least two empty squares on our board to 

contradict Theorem 9. First, note that we 

cannot have two unoccupied squares in 

any line since the line intersects the 

border squares somewhere - and these 

border squares have corresponding 

vertices of degree 3n-3. 

Consider now if we have two 

unoccupied squares with one of them on 

the border of the board, say without loss of 

generality in the far-left column. It follows 

that any other unoccupied square besides 

the known border square will be adjacent 

to a square in the far-left column. Thus, we 

have two unoccupied squares adjacent to a 

border square, or two unoccupied squares 

in the same row. In either case, since our 

border squares have corresponding 

vertices of degree 3n-3, there is a square 

along the border not dominated 3n-3 

times. It follows that if we’re to have two 

or more unoccupied squares none of these 

squares can be on the border. 

 

Finally, note that any interior square 

is adjacent to exactly 8 squares along 

the border. 

Note that we cannot have two unoccupied 

square adjacent to the same border square, 

since these squares have corresponding 

vertices of degree 3n-3. Thus, it follows 

that since we have 4(n-1) border squares, 

each of which can be adjacent to only one 

unoccupied square, then we have at most 

4(n-1)/8=(n-1)/2 unoccupied squares. 

Thus, for all n>2, γ×3n-3(Qn) ≥ n2- ˻(n-

1)/2˼. □ 
 

A quick, exhaustive hand search 

for γ×3n-3(Qn) values was done. It should 

be noted that for n=3 and n=4 the value 
for γ×3n-3(Qn) matches that of the lower 

bound given in Theorem 9. However, for 

n=5, n=6, n=7, and n=8 the lower bound 
provided in Theorem 9 doesn’t provide 

the appropriate γ×3n-3(Qn) values. The 

table below shows γ×3n-3(Qn) values up to, 

and including, the standard chessboard 
size. These values should be easy to 

verify with technology. 
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